Return to Main Documents Page

Torsion Angle Molecular Dynamics (Torsion Angle MD)

Performs torsion angle molecular dynamics of proteins, nucleic acids, carbohydrates and their complexes of input structures.

Accessibility

The Torsion Angle MD module is accessible from the Simulate section of the main menu.

Basic Usage

The purpose of the module is to perform molecular dynamics simulations of proteins, nucleic acids and/or carbohydrates by sampling backbone torsion angles using the TAMD module of CHARMM. The region of the molecule where the backbone torsion angles are sampled is referred to as the flexible region. Multiple flexible regions can be designated for a given segment of the molecule, and multiple segments in the molecule can contain flexible regions.

Notes

Screen Shots and Description of Input Fields

Case 1: Protein without Rg constraint

Full length of HIV-1 Gag protein can be divided into five globular domains, specifically, the MA domain (residue 1-122), the N-terminal domain of CA (residues 144-276), the C-terminal of domain of CA (residues 282-353), the p2 spacer (residues 374-377), and the NC domain (residues 390-431). This example generates a series of structures to sample conformations of the the MA + N-terminal domain of CA (residues 1-276) using the Torsion Angle MD module. The flexible region consists of residues 123-143.

inline image

This example generates a trajectory from an input PDB without a Rg constraint.

inline image

Complex Specific Input

Advanced Input Options

Example Output

inline image

./run_0/torsion_angle_md/gag_ma_nca.pdb    (original PDB file)
./run_0/torsion_angle_md/temp.inp          (TAMD input file)
./run_0/torsion_angle_md/min_00001.out     (TAMD output file)
./run_0/torsion_angle_md/tamd_noconstraint.dcd  (final TAMD trajectory)
./run_0/torsion_angle_md/tamd_dyn_00001.dcd     (all saved trajectories)
./run_0/torsion_angle_md/tamd_output.pdb   (PDB file created by TAMD)
./run_0/torsion_angle_md/tamd_output.psf   (PSF file created by TAMD)
./run_0/torsion_angle_md/tamd.tree         (TAMD tree file)
./run_0/torsion_angle_md/tamd.loops.rst    (TAMD restart file)
./run_0/torsion_angle_md/temp_0.pdb        (temporary PDB file)

Files Used and Created in Example

Case 2: Protein with Rg constraint

This example applies a Rg constraint for the input structure while TAMD sampling.

inline image

Example Output

inline image

Files Used and Created in Example

Visualization

TAMD simulations of 100 ps were performed on the HIV-1 Gag protein MA + N-terminal CA domains with and without a Rg constraint. Applying the constraint prevent the collapse of the molecule that occurs due to the limitations of current implict solvent models used in the CHARMM force field. The figure below shows the time trajectories of Rg (RGYR) for three different intitial conformations of the starting molecule with (solid lines) and without (dashed lines) the Rg constraint.

inline image

Case 3: Single-stranded RNA no Rg constraint (short run)

A short (1000 step) TAMD simulation is performed on a 80-nucleotide portion of an intron from the HIV-1 viral single-stranded RNA to illustrate how to use the Torsion Angle MD module with RNA molecules. The flexible regions are residues 24-30 and residues 47-55.

inline image

This example generates a trajectory from an input PDB without a Rg constraint.

inline image

Complex Specific Input

Example Output

inline image

./run_1/torsion_angle_md/trunc2a_min.pdb    (original PDB file)
./run_1/torsion_angle_md/temp.inp          (TAMD input file)
./run_1/torsion_angle_md/min_00001.out     (TAMD output file)
./run_1/torsion_angle_md/tamd_noconstraint.dcd  (final TAMD trajectory)
./run_1/torsion_angle_md/tamd_dyn_00001.dcd     (all saved trajectories)
./run_1/torsion_angle_md/tamd_output.pdb   (PDB file created by TAMD)
./run_1/torsion_angle_md/tamd_output.psf   (PSF file created by TAMD)
./run_1/torsion_angle_md/tamd.tree         (TAMD tree file)
./run_1/torsion_angle_md/tamd.loops.rst    (TAMD restart file)
./run_1/torsion_angle_md/temp_0.pdb        (temporary PDB file)

Files Used and Created in Example

Case 4: Linear B-form dsDNA no Rg constraint (short run)

A short (1000 step) TAMD simulation is performed on a 60 base pair B-form double stranded DNA molecule to illustrate how to use the Torsion Angle MD module with dsDNA molecules. The entire molecule, excluding the first and last residues in each strand will be assigned as the flexible regions.

NOTE: Residues are numbered continuously from 1 to 120 (1-60 for segment DNA1 and 61-120 for segment DNA2). Residue numbering is from the 5' to 3' direction of DNA1, continuing from the 5' to 3' direction of DNA2.

inline image

This example generates a trajectory from an input PDB without a Rg constraint.

inline image

Complex Specific Input

Example Output

inline image

./run_2/torsion_angle_md/c36_dsDNA60_min.pdb    (original PDB file)
./run_2/torsion_angle_md/temp.inp          (TAMD input file)
./run_2/torsion_angle_md/min_00001.out     (TAMD output file)
./run_2/torsion_angle_md/tamd_noconstraint.dcd  (final TAMD trajectory)
./run_2/torsion_angle_md/tamd_dyn_00001.dcd     (all saved trajectories)
./run_2/torsion_angle_md/tamd_output.pdb   (PDB file created by TAMD)
./run_2/torsion_angle_md/tamd_output.psf   (PSF file created by TAMD)
./run_2/torsion_angle_md/tamd.tree         (TAMD tree file)
./run_2/torsion_angle_md/tamd.loops.rst    (TAMD restart file)
./run_2/torsion_angle_md/temp_0.pdb        (temporary PDB file)

Files Used and Created in Example

Reference(s) and Citations

  1. Application of torsion angle molecular dynamics for efficient sampling of protein conformations J. Chen, W. Im, C. L. Brooks III, J. Comput. Chem. 26 1565-1578 (2005). BIBTeX, EndNote, Plain Text

  2. A coupled implicit method for chemical non-equilibrium flows at all speeds S. Jian, K. H. Chen, Y. Choi, J. Comput. Phys. 106 306-318 (1993). BIBTeX, EndNote, Plain Text

  3. CHARMM: The energy function and its parameterization with an overview of the program A. D. MacKerel Jr., C. L. Brooks III, L. Nilsson, B. Roux, Y. Won, M. Karplus, The Encyclopedia of Computational Chemistry, John Wiley & Sons: Chichester, 271-277 (1998). BIBTex, Endnote, Plain Text

  4. Combined Monte Carlo Torsion-Angle Molecular Dynamics for Ensemble Modeling of Proteins, Nucleic Acids and Carbohydrates W. Zhang, S. C. Howell, D. W. Wright, A. Heindel, X. Qiu, J. Che, J. E. Curtis, J. Mol. Graph. Mod. 73 179-190 (2017). BIBTex, Endnote, Plain Text

Return to Simulate

Return to Main Documents Page

Go to top