%A Baker, Nathan A. %A Sept, David %A Joseph, Simpson %A Holst, Michael J. %A McCammon, J. Andrew %T Electrostatics of nanosystems: Application to microtubules and the ribosome %0 Journal Article %D 2001 %8 August 28, 2001 %J Proceedings of the National Academy of Sciences %P 10037-10041 %R 10.1073/pnas.181342398 %V 98 %N 18 %U http://www.pnas.org/content/98/18/10037.abstract %X Evaluation of the electrostatic properties of biomolecules has become a standard practice in molecular biophysics. Foremost among the models used to elucidate the electrostatic potential is the Poisson-Boltzmann equation; however, existing methods for solving this equation have limited the scope of accurate electrostatic calculations to relatively small biomolecular systems. Here we present the application of numerical methods to enable the trivially parallel solution of the Poisson-Boltzmann equation for supramolecular structures that are orders of magnitude larger in size. As a demonstration of this methodology, electrostatic potentials have been calculated for large microtubule and ribosome structures. The results point to the likely role of electrostatics in a variety of activities of these structures.